

IC TEST SYSTEM

Bedienungsanleitung

FLS 106 IC set / FLS 106 PCB set

IC-Scanner 4-Achsen-Positioniersystem / PCB-Scanner 3-Achsen-Positioniersystem

Copyright © Februar 2019 LANGER EMV-Technik GmbH

- Originalbedienungsanleitung -

Inhalt:

Seite

1	Kor	nfo	rmitätserklärung	7
2	Allg	gen	neines	8
2.	.1	Au	fbewahrung der Bedienungsanleitung	8
2.	.2	Be	dienungsanleitung lesen und verstehen	8
2.	.3	Ört	liche Sicherheits- und Unfallverhütungsvorschriften	8
2.	.4	Bilo	der und Grafiken	8
2.	.5	Ha	ftungsbeschränkungen	8
2.	.6	Fel	hler und Auslassungen	8
2.	.7	Urł	neberschutz	8
2.	.8	Syı	mbolbeschreibungen	9
3	Lie	fer	umfang1	0
3.	.1	Lie	ferumfang FLS 106 IC set*1	0
3.	.2	Lie	ferumfang FLS 106 PCB set*1	0
4	Тес	hn	ische Parameter1	1
4.	.1	Allę	gemeine Parameter des Scanners FLS 1061	1
4.	.2	Те	chnische Parameter der Baugruppen1	2
	4.2.	1	UH DUT1	2
	4.2.	2	Krallen claw 01 und claw 021	2
	4.2.	3	GND 25 Halter1	3
	4.2.	4	Groundplane GND 251	4
	4.2.	5	Sondenhalterung SH 011	4
	4.2.	6	Sicherheitsumhausung SUH 1061	5
	4.2.	7	Not-Aus-Schalter, extern NA 51	5
4.	.3	Vo	raussetzungen für die Software ChipScan-Scanner1	6
4.	.4	Um	ngebungsbedingungen für den Betrieb1	6
5	Bes	stin	nmungsgemäße Verwendung1	7
5.	.1	Pe	rsonalanforderungen1	7
5.	.2	Ge	fahren bei nicht bestimmungsgemäßer Verwendung1	8
5.	.3	Sic	herheitshinweise1	8
:	5.3.	1	Allgemeine Hinweise1	8
:	5.3.	2	Gefahren durch elektrische Spannung1	9
:	5.3.	3	Gefahr durch Bewegungen entlang der Achsen1	9
5.	.4	Luf	ftschallemission bei bestimmungsgemäßer Verwendung1	9
6	Sic	hei	rheitseinrichtungen2	0
6.	.1	Vo	raussetzungen für den sicheren Betrieb2	20

	6.1.	1	Betrieb mit Schutzumhausung	20
	6.1.	2	Betrieb mit räumlicher Abtrennung	20
(5.2	Ve	rhalten beim Einschalten bzw. nach Spannungsunterbrechung	20
(5.3	No	t-Aus-Schalter	20
(6.4	Üb	erstromschutzeinrichung	20
7	Um	we	ltschutz	21
8	Тур	ben	schild	21
9	Übe	ersi	icht Scanner FLS 106	22
ę	9.1	FL	S 106 mit Achsenbeschriftung	22
9	9.2	Ba	ugruppenbeschreibung	22
	9.2.	1	Führungsschienen entlang der X-Achse	22
	9.2.	2	Führungsschienen entlang der Y-Achse (lange Seite)	23
	9.2.	3	Z-Achsenturm	23
	9.2.	4	Portal	24
	9.2.	5	Dreheinheit	24
	9.2.	6	Aluminium-Befestigungswinkel	25
	9.2.	7	T-Nutentisch	26
	9.2.	8	Bedienpult mit Not-Aus-Einrichtung und Kontroll-LEDs	27
	9.2.	9	Höhenverstellbare Maschinenfüße	27
ę	9.3	EIN	N-/AUS-Schalter und Anschlüsse	28
	9.3.	1	EIN-/AUS-Schalter	28
	9.3.	2	Anschluss für Stromversorgung	28
	9.3.	3	Anschluss für externen Not-Aus-Schalter oder Schutzumhausung	28
	9.3.	4	Anschlüsse am Z-Achsenturm	29
	9.3. 	5	Anschlüsse am Bedienpult	29
10	Ube	ersi	icht Anbauteile	
	10.1	Ka	meraarm KA 220	
	10.2	DN	1-CAM holder.3	
	10.3	DN	1-CAM mit Kameraschraube	
	10.4	Spa		
	10.5		I DUT mit Krallen claw 01 und claw 02	
	10.6 GND 25 Halter			
	10.7	Gro	ounopiane GND 25	
	0.01	301 100		
11			erung	
	11.1		ansport	
•	11.2	AUI	nanmeinspekiion	35

11.3 Lagerung	35
11.4 Öffnen der Transportkiste	36
11.5 Verpackung	36
12 Aufbau und Vorbereitungen für die Inbetriebnahme des Scanners FLS 106	37
12.1 Vorbereitung für einen sicheren Betrieb des Scanners FLS 106	37
12.2 Sicherheitshinweise zum Aufbau des FLS 106	37
12.3 Aufstellen des FLS 106	38
12.4 Akklimatisierung nach Umgebungswechsel	38
12.5 Entfernung der Schutzfolie	39
12.6 Höhenanpassung des FLS 106	39
12.7 Entfernung des Transportschutzes von den Führungsschienen	40
12.8 Not-Aus prüfen / entriegeln	41
13 Erstinbetriebnahme des Scanners FLS 106	42
14 Installation	43
14.1 Gewährleistung des sicheren Betriebs	43
14.1.1 Betrieb mit Sicherheitsumhausung SUH 106	43
14.1.2 Betrieb mit räumlicher Abtrennung und externem Not-Aus-Schalter NA 5	43
14.2 Kabel der Dreheinheit prüfen	44
14.3 Installation der digitalen Mikroskopkamera DM-CAM am FLS 106 IC	44
14.3.1 Installation der Halterung für Mikroskopkamera DM-CAM holder.3	44
14.3.2 Installation der digitalen Mikroskopkamera DM-CAM	45
14.4 Installation der digitalen Mikroskopkamera DM-CAM am FLS 106 PCB	46
14.5 Anschluss des Kaltgerätekabels	46
14.6 Anschluss eines Computers	47
14.7 Anschluss eines Messgerätes für Nahfeldscans am Beispiel eines Spektrumanalysa	tors .47
14.8 Einschalten des Scanners FLS 106	48
15 Software-Installation	49
15.1 Hinweis zur Software-Installation	49
15.2 Installation des Scanner-Treibers	49
15.3 Installation der Software ChipScan-Scanner	51
15.4 Inbetriebnahme des Scanners FLS 106 mit der Software ChipScan-Scanner	52
16 Befestigung des Prüflings	55
16.1 Befestigung eines Prüflings mit Spannpratzen	55
16.2 Befestigung einer Leiterkarte auf Universalhalter UH DUT	56
16.2.1 Installation UH DUT	56
16.2.2 Befestigung der Leiterkarte	57
16.3 Befestigung der Groundplane GND 25 für IC-Messungen	58

16.3.1 Installation des GND 25 Halters	58
16.3.2 Installation der Groundplane GND 25	59
16.3.3 Sicherheitshinweise zur Groundplane GND 25	59
17 Installation ICR-Nahfeldmikrosonde	60
17.1 Sicherheitshinweise zur Installation einer ICR-Nahfeldmikrosonde	60
17.2 Verlegung der Anschlusskabel	60
17.3 Anschluss der ICR-Nahfeldmikrosonde	62
17.4 Installation des Bias-Tees BT 706	64
17.5 Kollisionskontrolle der ICR-Sonde	65
18 Installation einer Nahfeldsonde mit der Sondenhalterung SH 01	66
18.1 Installation Nahfeldsonde am FLS 106 IC	66
18.1.1 Direkter Anschluss einer Nahfeldsonde am Scanner FLS 106 IC	67
18.1.2 Anschluss Nahfeldsonde mit Vorverstärker	68
18.2 Installation Nahfeldsonde am FLS 106 PCB	70
18.2.1 Direkter Anschluss einer Nahfeldsonde am Scanner FLS 106 PCB	71
18.2.2 Anschluss Nahfeldsonde mit Vorverstärker	71
18.3 Kollisionskontrolle der Nahfeldsonde	72
19 Hinweise zum Betrieb des Scanners FLS 106	73
19.1 Überprüfung des Messaufbaus vor jeder Benutzung	73
19.2 Exakte Höhe der Sondenspitze über dem DUT einstellen	73
19.3 Abschätzung der Dauer einer Messung mit dem Scanner FLS 106	74
19.3.1 Anzahl Messpunkte	74
19.3.2 Bewegungsabstand	74
19.3.3 Sweeptime	74
19.3.4 Übertragungszeit	74
19.4 Speichervoraussetzung für die Messung	75
20 Nach Beendigung der Messung	76
21 Abbau nach Beendigung der Messung/en	76
21.1 Abbau der ICR-Sonde	76
21.2 Abbau der Nahfeldsonde	76
21.3 Abbau der Sondenhalterung SH 01 vom FLS 106 IC	76
21.4 Abbau des Vorverstärkers bzw. Bias-Tees BT 706	77
21.5 Abbau eines Prüflings vom T-Nutentisch	77
21.6 Abbau einer Leiterkarte vom UH DUT	77
21.7 Abbau des UH DUT	77
21.8 Abbau der GND 25	77
21.9 Abbau des GND 25 Halters	77

LANGER

EMV-Technik

21.10 Abbau der Mikroskopkamera DM-CAM	77
21.11 Abbau der Kamerahalterung DM-CAM holder.3	77
22 Wartung	78
22.1 Allgemeine Hinweise	78
22.2 Wartungsintervalle	78
22.3 Erneuerung der Beschilderung	78
23 Demontage	79
23.1 Allgemeine Hinweise	79
23.2 Sicherheitshinweise für Demontage	79
23.3 Demontage	79
24 Entsorgung	80
24.1 Entsorgung von Verpackungsmaterial	80
24.2 Entsorgung des Scanners und seiner Komponenten	80
25 Kundenservice	81
26 Gewährleistung	82

1 Konformitätserklärung

Hersteller:

Langer EMV-Technik GmbH Nöthnitzer Hang 31 01728 Bannewitz Germany

Die Langer EMV-Technik GmbH erklärt hiermit, dass das Positioniersystem

FLS 106 IC / FLS 106 PCB

den folgenden einschlägigen Bestimmungen entspricht:

- Maschinenrichtlinie 2006/42 EG
- EMV-Richtlinie 2014/30/EU
- RoHS 2011/65/EU

Es werden die Schutzziele der Niederspannungsrichtlinie 2014/35/EU eingehalten.

Zur Umsetzung der Anforderungen aus den oben genannten Richtlinien wurden folgende zutreffende Normen verwendet:

- DIN EN ISO 12100:2011 (Sicherheit von Maschinen – Allgemeine Gestaltungsleitsätze – Risikobeurteilung und Risikominderung)

- DIN EN 60204-1:2014-10 (Sicherheit von Maschinen – Elektrische Ausrüstung von Maschinen – Teil 1: Allgemeine Anforderungen)

- EN 61000-6-4:2007 (Fachgrundnormen – Störaussendung für Industriebereiche)

- EN 61000-6-2:2006 (Fachgrundnormen – Störfestigkeit für Industriebereiche)

Name der Person, die bevollmächtigt ist, die technischen Unterlagen zusammenzustellen:

Gunter Langer

Bannewitz, den 02.04.2019

Unterschrift:

(Unterschrift) G. Langer, Geschäftsführer

2 Allgemeines

2.1 Aufbewahrung der Bedienungsanleitung

Diese Bedienungsanleitung ermöglicht den sicheren und effizienten Einsatz des Scanners FLS 106. Sie muss griffbereit und für den Benutzer leicht zugänglich aufbewahrt werden.

2.2 Bedienungsanleitung lesen und verstehen

Bevor das Produkt verwendet wird, muss der Anwender die Bedienungsanleitung gelesen und verstanden haben. Beachten Sie die Sicherheitshinweise und folgen Sie den Anweisungen in dieser Bedienungsanleitung.

2.3 Örtliche Sicherheits- und Unfallverhütungsvorschriften

Die örtlichen Sicherheits- und Unfallverhütungsvorschriften müssen eingehalten werden.

2.4 Bilder und Grafiken

Bilder und Grafiken in dieser Anleitung tragen zu einem besseren Verständnis bei, können aber von der eigentlichen Ausführung abweichen.

2.5 Haftungsbeschränkungen

Langer EMV-Technik GmbH ist nicht verantwortlich für Personen- oder Sachschaden, wenn

- den Anweisungen in dieser Anleitung nicht Folge geleistet wurde.
- das Produkt von Personen verwendet wurde, welche nicht im Bereich der EMV qualifiziert sind.
- das Produkt eigenmächtig modifiziert oder technisch verändert wurde.
- das Produkt nicht bestimmungsgemäß verwendet wurde.
- Zubehör oder Ersatzteile benutzt wurden, welche nicht von der

Langer EMV-Technik GmbH genehmigt wurden.

Der tatsächliche Lieferumfang kann durch die Anpassung von Bestellungen oder durch technische Änderungen und Innovationen von den Abbildungen und Texten in dieser Bedienungsanleitung abweichen.

2.6 Fehler und Auslassungen

Die Informationen in der vorliegenden Bedienungsanleitung wurden sorgfältig überprüft und nach bestem Wissen wird angenommen, das diese korrekt sind; die Langer EMV-Technik GmbH übernimmt jedoch keine Verantwortung für Schreibfehler, Druckfehler oder Fehler beim Korrekturlesen.

2.7 Urheberschutz

Der Inhalt dieser Bedienungsanleitung ist urheberrechtlich geschützt und darf nur in Verbindung mit dem Scanner FLS 106 verwendet werden. Diese Bedienungsanleitung darf ohne vorherige schriftliche Genehmigung von Langer EMV-Technik GmbH nicht für andere Zwecke verwendet werden.

2.8 Symbolbeschreibungen

3 Lieferumfang

3.1 Lieferumfang FLS 106 IC set*

Pos.	Artikelname	Kurzbezeichnung	Stck.
1	4-Achsen-Positioniersystem	FLS 106 IC	1
2	Software ChipScan-Scanner	CS-Scanner	1
3	Halter für GND 25	GND 25 Halter	1
4	Groundplane	GND 25	1
5	Halterung für Mikroskopkamera	DM-CAM holder.3	1
6	Digitale Mikroskopkamera	DM-CAM	1
7	Dreheinheit	Rotary unit	1
8	Not-Aus-Schalter, extern	NA 5	1
9	Bedienungsanleitung	FLS 106 m	1

* Der Lieferumfang kann je nach Auftrag vom aufgezählten Lieferumfang abweichend sein.

3.2 Lieferumfang FLS 106 PCB set*

Pos.	Artikelname	Kurzbezeichnung	Stck.
1	3-Achsen-Positioniersystem	FLS 106 PCB	1
2	Software ChipScan-Scanner	CS-Scanner	1
3	Universalhalter für Langer Scanner	UH DUT	1
4	Kralle	claw 01	4
5	Kralle	claw 02	4
6	Digitale Mikroskopkamera	DM-CAM	1
7	Sondenhalterung für Langer Scanner	SH 01	1
8	Kameraarm	KA 220	1
9	Not-Aus-Schalter, extern	NA 5	1
10	Bedienungsanleitung	FLS 106 m	1

* Der Lieferumfang kann je nach Auftrag vom aufgezählten Lieferumfang abweichend sein.

LANGER EMV-Technik DE-01728 Bannewitz mail@langer-emv.de www.langer-emv.de

4 Technische Parameter

4.1 Allgemeine Parameter des Scanners FLS 106

Versorgungsspannung	100 - 250 V (50/60 Hz)	
Stromaufnahme	4,5 A	
Schnittstelle	USB 2.0 Typ B (Hi-Speed)	
Gewicht	75 kg	
Maße (L x B x H)	(1030 x 775 x 900) mm	
Tabelle 1: Allgemeine technische Parameter vom Scanner FLS 106		

Achsen	x	Y	Z	α-Rotation
Max. Verfahrweg	400 mm	600 mm	120 mm	±180°
Min. Verfahrweg	20 µm	20 µm	20 µm	1°
Verfahr- geschwindigkeit	20 mm/s	25 mm/s	10 mm/s	90°/s
Tabelle 2: Technische Parameter der X-, Y- und Z-Achse und der Rotationsachse (nur FLS 106 IC)				

4.2 Technische Parameter der Baugruppen

4.2.1 UH DUT

4.2.2 Krallen claw 01 und claw 02

4.2.3 GND 25 Halter

4.2.4 Groundplane GND 25

Durchmesser	218 mm	
Tiefe der Aussparung	1,7 mm	
Maße der Aussparung (L x B)	(103 x 103) mm	
Gewicht	2 kg	
Höhe	24 mm	
Tabelle 3: Technische Parameter der Groundplane GND 25		

4.2.5 Sondenhalterung SH 01

Sondenhülse	Länge: 40 mm	
	Ø Innen: 9,9 mm	
	Ø Außen: 12 mm	
Tabelle 4: Technische Parameter der Sondenhalterung SH 01		

4.2.6 Sicherheitsumhausung SUH 106

Länge	1260 mm	
Breite	890 mm	
Höhe	1000 mm	
Anschluss	D-Sub 25polig	
Gewicht	50 kg	
Tabelle 5: Technische Parameter der Sicherheitsumhausung SUH 106		

4.2.7 Not-Aus-Schalter, extern NA 5

Kabellänge	5 m
Tabelle 6: Technische Parameter des e	externen Not-Aus-Schalters NA 5

4.3 Voraussetzungen für die Software ChipScan-Scanner

Betriebssystem	Windows 7 64-Bit (aktuellste Service-Packs)		
Monitor-Auflösung	(1280 x 1024) px		
Festplattenspeicher	Min. 1 GB / empfohlen 10 GB		
Tabelle 7: Systemvoraussetzungen der Software ChipScan-Scanner			

Prozessor	Intel Core i7 2.7 GHz		
beitsspeicher 8 GB			
Grafikkarte AMD Radeon 7950			
Grafikkarten-Speicher	3 GB		
Tabelle 8: Empfohlene Spezifikationen für den verwendeten PC zur Nutzung der Software ChipScan-Scanner			

4.4 Umgebungsbedingungen für den Betrieb

Temperaturbereich	10 – 30°C			
Maximale Feuchtigkeit (ohne Kondensation)	85%			
Tabelle 9: Zulässige Umgebungsbedingungen für den Betrieb des IC-Scanners ICS 105				

5 Bestimmungsgemäße Verwendung

Der Scanner FLS 106 ist ein Positioniersystem für Sonden der Langer EMV-Technik GmbH und dient ausschließlich Tests bzw. Messungen an elektronischen Baugruppen (PCBs) und integrierten Schaltkreisen (ICs).

Es werden folgende Sonden-Typen der Langer EMV-Technik GmbH unterstützt:

- ICR Nahfeldmikrosonden
- passive Nahfeldsonden

Es können vom Prüfling (DUT) ausgekoppelte Felder gemessen werden.

Die Sonden können über der DUT-Oberfläche in der X-, Y- und Z-Achse bewegt werden. Der FLS 106 IC ermöglicht zusätzlich die Rotation um die Z-Achse. Die Position der Sondenspitze kann mittels der digitalen Mikroskopkamera DM-CAM jederzeit visuell überprüft werden. Der FLS 106 wird über PC mit der Software ChipScan-Scanner gesteuert.

Anwendungsbereiche umfassen u.a.:

- Oberflächenscans entsprechend der Norm DIN IEC/TS 61967-3
- Volumenscans
- Pin-Scans

Der Scanner FLS 106 darf nur unter Beachtung der in Kapitel 6.1 beschriebenen Voraussetzungen für den Betrieb benutzt werden.

Die Angaben und Anweisungen dieser Bedienungsanleitung müssen eingehalten werden.

Der Scanner FLS 106 darf nur in einer Umgebung von 10 bis 30 Grad Celsius und einer Luftfeuchtigkeit von 20 bis 85 Prozent ohne Kondensation betrieben werden.

Halten sie den Scanner frei von Fremdkörpern, Schmutz und Flüssigkeiten um Beeinträchtigungen beim Messen oder Beschädigungen am Scanner vorzubeugen.

5.1 Personalanforderungen

Nur Personen, die im Bereich der elektromagnetischen Verträglichkeit (EMV) qualifiziert und ausgebildet sind, dürfen den Scanner FLS 106 bedienen.

Es ist untersagt den Scanner FLS 106 von Personen bedienen zu lassen, deren Reaktionsfähigkeit durch z.B. Alkohol, Medikamente oder Drogen beeinflusst ist.

5.2 Gefahren bei nicht bestimmungsgemäßer Verwendung

Gefahr durch Fehlanwendung!

Fehlerhafte Anwendung des Scanners FLS 106 kann zu gefährlichen Situationen führen.

Fehlerhafte Verwendung des Scanners FLS 106 kann zu einer Gefährdung des Benutzers, zu einer Beschädigung des Scanners und/oder der mit dem Scanner verbundenen Technik führen.

Beispiele fehlerhafter Anwendungen, die zur Gefährdung führen können:

- Sicherheitseinrichtungen werden umgangen oder außerkraftgesetzt.
- Der Scanner FLS 106 befindet sich beim Betrieb in einem nicht einwandfreien technischen Zustand.
- Der Scanner FLS 106 wird nicht innerhalb der angegebenen technischen Parameter betrieben.
- Durch Veränderung an der Konstruktion wird der Anwendungsbereich verändert.

Es entstehen keine Ansprüche aufgrund nicht bestimmungsgemäßer Verwendung!

5.3 Sicherheitshinweise

5.3.1 Allgemeine Hinweise

Trotz bestimmungsgemäßer Verwendung des Scanners FLS 106 können Risiken nicht ganz ausgeschlossen werden.

Um Sach- und Personenschäden zu vermeiden, müssen die hier aufgeführten Sicherheits- und Gefahrenhinweise beachtet werden. Beachten Sie außerdem die Bedienungs- und Sicherheitshinweise für alle weiteren im Messaufbau verwendeten Geräte.

Führen Sie eine Sichtprüfung durch, bevor Sie eine Messung mit einem Produkt der Langer EMV-Technik GmbH durchführen. Ersetzen Sie beschädigte Verbindungskabel, Anbauteile und Sonden. Bitte kontaktieren Sie die Langer EMV-Technik GmbH für Ersatz oder Reparatur der beschädigten Teile.

Tragen Sie eng anliegende Kleidung bei Verwendung des Scanners.

→ Wir übernehmen keine Haftung für Sach- und/oder Personenschäden oder für Folgeschäden, die durch unsachgemäßes Auspacken, Einrichten oder Bedienen des FLS 106 Scanners entstehen.

5.3.2 Gefahren durch elektrische Spannung

Gefahr durch Elektrizität!

Verletzungsgefahr durch Stromschlag!

Prüfen Sie vor jeder Benutzung des Scanners alle Anbauteile, Messgeräte, Kabel und Sonden. Verwenden Sie niemals beschädigte oder defekte Geräte.

Schließen Sie kein Kabel an oder trennen Sie es nicht, während der Scanner FLS 106 in Betrieb ist.

Öffnen des Scanners sowie Arbeiten an elektrischen Bauteilen und elektrischen Leitungen sind nur durch Personal der Langer EMV-Technik GmbH zulässig.

Bei festgestellten Mängeln an der Isolation von Leitungen oder elektrischen Bauteilen sofort das Gerät abschalten, Netzstecker ziehen und die Langer EMV-Technik GmbH kontaktieren!

5.3.3 Gefahr durch Bewegungen entlang der Achsen

Gefahr durch Achsenbewegung!

Verletzungsgefahr durch Quetschungen!

Halten Sie Gliedmaßen von Bereichen fern, in welchen sie von sich bewegenden Teilen erfasst werden können.

Wichtig: Der Betrieb des Scanners ist nur innerhalb einer Schutzumhausung (Abschnitte 6.1.1 und 14.1.1) oder mit einer räumlichen Abtrennung (Abschnitte 6.1.2 und 14.1.2) zulässig. Damit ist das Installieren und Deinstallieren von Anbauteilen, Sonden und DUTs nur möglich, wenn der Scanner FLS 106 sich im Stillstand befindet.

5.4 Luftschallemission bei bestimmungsgemäßer Verwendung

Bei bestimmungsgemäßer Verwendung des Scanners FLS 106 liegt der Geräuschpegel unterhalb von 70 dB(A).

Es wird kein Gehörschutz benötigt.

6 Sicherheitseinrichtungen

6.1 Voraussetzungen für den sicheren Betrieb

Der Scanner FLS 106 darf nur betrieben werden, wenn entweder

eine Schutzumhausung verwendet wird oder

- eine räumliche Abtrennung in Verbindung mit dem externen Not-Aus-Schalter NA 5 verwendet wird.

Der Scanner FLS 106 wird sofort stillgesetzt, wenn

- der Not-Aus-Schalter am Gerät betätigt wird
- der externe Not-Aus-Schalter betätigt wird
- die Schutzumhausung geöffnet wird.

Nachdem der Not-Aus-Schalter am Scanner gedrückt wurde, muss dieser durch Drehen im Uhrzeigersinn entriegelt werden, damit ein Wiedereinschalten möglich ist.

Nachdem der externe Not-Aus-Schalter NA 5 gedrückt wurde, muss dieser durch Ziehen entriegelt werden, damit ein Wiedereinschalten möglich ist.

Anschließend ist eine erneute Kalibrierung des Scanners durch die Software notwendig.

6.1.1 Betrieb mit Schutzumhausung

Der Scanner FLS 106 wird innerhalb der Schutzumhausung SUH 106 betrieben.

6.1.2 Betrieb mit räumlicher Abtrennung

Der Benutzer schafft in ausreichendem Abstand eine räumliche Abtrennung, um ein Eingreifen in den Scanner während des Betriebes zu verhindern. Geeignete Maßnahmen hierfür sind z.B. Absperreinrichtungen oder Umzäunungen. In dieser Betriebsart ist der externe Not-Aus-Schalter am Scanner anzuschließen und außerhalb der Abtrennung so aufzustellen, dass er jederzeit erreicht werden kann.

6.2 Verhalten beim Einschalten bzw. nach Spannungsunterbrechung

Aktivierung oder Funktion des Scanners FLS 106 ist in allen Fällen nur über Software nach erfolgtem Selbsttest möglich.

6.3 Not-Aus-Schalter

Durch Druck auf den Not-Aus-Schalter wird die Not-Aus-Funktion ausgelöst. Der Scanner FLS 106 wird sofort stillgesetzt.

Nachdem der Not-Aus-Schalter gedrückt wurde, muss dieser durch Drehen im Uhrzeigersinn entriegelt werden, damit ein Wiedereinschalten möglich ist.

6.4 Überstromschutzeinrichung

Eingangssicherungen schützen den Scanner im Fehlerfall. Das Netzteil ist kurzschlussfest.

7 Umweltschutz

Verpackungsmaterial muss unter Beachtung der örtlichen Umweltschutzvorschriften entsorgt werden.

Schmierstoffe wie Fette und Öle auf Mineralölbasis, dürfen nicht in die Umwelt gelangen. Sie müssen unter Beachtung der örtlichen und behördlichen Vorschriften über entsprechende Sammelstellen entsorgt werden.

8 Typenschild

Das Typenschild befindet sich auf der Rückseite des FLS 106. Es dient der eindeutigen Kennzeichnung des Scanners. Folgende Angaben finden sich auf dem Typenschild:

- Bezeichnung des Gerätes
- Firmenname und vollständige Anschrift des Herstellers
- Die CE-Kennzeichnung / das CE-Symbol
- Die Seriennummer und die Artikel-Nummer
- Baujahr (Jahr, in dem der Herstellungsprozess abgeschlossen wurde)

DE-01728 Bannewitz mail@langer-emv.de www.langer-emv.de

LANGER

EMV-Technik

9 Übersicht Scanner FLS 106

9.1 FLS 106 mit Achsenbeschriftung

9.2 Baugruppenbeschreibung

9.2.1 Führungsschienen entlang der X-Achse

Entlang der X-Achse bewegt sich der Z-Achsenturm mit Hilfe des elektrisch angetriebenen Schrittmotors auf den Führungsschienen über den Arbeitsbereich von 400 mm.

9.2.2 Führungsschienen entlang der Y-Achse (lange Seite)

Entlang der Y-Achse bewegt sich das Portal mit Hilfe des elektrisch angetriebenen Schrittmotors auf den Führungsschienen über den Arbeitsbereich von 600 mm.

9.2.3 Z-Achsenturm

Beim FLS 106 IC befindet sich unten am Z-Achsen-Turm die Dreheinheit. Beim FLS 106 PCB befinden sich unten am Z-Achsen-Turm die Sondenhalterung SH 01 und der Kameraarm KA 220.

Der Verfahrweg der Z-Achse beträgt 125 mm.

9.2.4 Portal

Das Portal transportiert die an der Dreheinheit installierte Sonde und die digitale Mikroskopkamera DM-CAM entlang der Y-Achse.

9.2.5 Dreheinheit

Der Scanner FLS 106 IC ist standardmäßig mit einer Dreheinheit ausgestattet.

Die Dreheinheit dient als vierte Achse; mit ihr lässt sich die installierte Sonde in der Z-Achse um ±180° rotieren.

An der Dreheinheit wird die Kamerahalterung DM-CAM holder.3 für die digitale Mikroskopkamera befestigt. Am Drehring der Dreheinheit lässt sich entweder eine ICR-Sonde oder die Sondenhalterung SH 01 befestigen.

Die SMA-Messkabel können an der SMA-Kupplung angeschlossen werden (Bild 15).

Das Kabel SSMB-SSMB für die Kollisionskontrolle wird am SSMB-Anschluss angeschlossen (Bild 15).

9.2.6 Aluminium-Befestigungswinkel

Der Scanner FLS 106 PCB ist standardmäßig mit einem Aluminium-Befestigungswinkel ausgerüstet.

Der Aluminium-Befestigungswinkel dient der Aufnahme vom Kameraarm KA 220 und von der Sondenhalterung SH 01.

9.2.7 T-Nutentisch

Der T-Nutentisch (600 mm x 540 mm x 19 mm) besteht aus mehreren Hohlkammerprofilen. In die einzelnen Hohlkammern (T-Nuten) können T-Nutensteine (Bild 17) eingeschoben werden, um die Spannpratzen (Abschnitt 10.4) oder den GND 25 Halter (Abschnitt 10.6) mit entsprechenden Schrauben (M8) zu befestigen.

Die T-Nuten haben eine innere Höhe und Breite von 13,6 mm (DIN 508).

9.2.8 Bedienpult mit Not-Aus-Einrichtung und Kontroll-LEDs

Die im Bedienpult integrierte Not-Aus-Einrichtung ("Emergency Stop") dient zum sofortigen Stillsetzen des Scanners FLS 106.

Mit Hilfe der Kontroll-LEDs wird angezeigt, ob der Scanner eingeschaltet ("Power") bzw. in Bewegung ("Moving") ist.

9.2.9 Höhenverstellbare Maschinenfüße

Zur Ausrichtung des Scanners können die vier Maschinenfüße separat in der Höhe verstellt werden.

9.3 EIN-/AUS-Schalter und Anschlüsse

9.3.1 EIN-/AUS-Schalter

Der EIN-/AUS-Kippschalter befindet sich auf der Rückseite des Scanners FLS 106.

9.3.2 Anschluss für Stromversorgung

Ein Kaltgeräteanschluss C14 zur Stromversorgung befindet sich neben dem EIN-/AUS-Schalter auf der Rückseite des Scanners FLS 106.

9.3.3 Anschluss für externen Not-Aus-Schalter oder Schutzumhausung

Der Anschluss mit dem Schriftzug "ext. Stop" befindet sich auf der Rückseite des Scanners FLS 106 und dient dem Anschluss der Sicherheitsumhausung SUH 106 oder des Not-Aus-Schalters extern NA 5.

9.3.4 Anschlüsse am Z-Achsenturm

12 V DC rot. Axis	
RF in Camera	
Bild 23: Anschlüsse am Z-Achsenturm	

- HR10-Anschlüsse:
 - 12-polig mit Schriftzug "Camera" zum Anschließen der digitalen Mikroskop-Kamera DM-CAM
 - 10-polig mit Schriftzug "rot. Axis" zum Anschließen der Dreheinheit bzw. zum Anschließen des SSMB-HR10-Kabels (Tiefentestkabel)
 - 6-polig mit Schriftzug "12 V DC" zum Anschließen der Stromversorgung für Bias-Tee oder Vorverstärker
- SMA-Anschluss mit Schriftzug "RF in" zum Anschließen einer Nahfeldsonde, eines Bias-Tees oder Vorverstärkers mittels HF-Kabel.

9.3.5 Anschlüsse am Bedienpult

- USB-Anschluss vom Typ B mit Schriftzug "USB" zum Verbinden mit einem PC mit entsprechendem USB-Kabel,
- SMA-Anschluss mit Schriftzug "RF out" zum Verbinden eines Messgeräts, wie Spektrumanalysator oder Oszilloskop mittels HF-Kabel.

10 Übersicht Anbauteile

10.1 Kameraarm KA 220

Der Kameraarm KA 220 des Scanners FLS 106 PCB hält die digitale Mikroskopkamera DM-CAM. Er befindet sich am Aluminium-Befestigungswinkel.

Der KA 220 ist ein stufenlos verstellbarer Gelenkarm. Das mechanische Spannsystem ermöglicht eine einfache und genaue Positionierung. Die drei Gelenke des KA 220 können durch eine einzige Drehung des Zentralspanngriffs fixiert und gelöst werden.

10.2 DM-CAM holder.3

Der DM-CAM holder.3 des Scanners FLS 106 IC dient der Positionierung und Befestigung der digitalen Mikroskopkamera DM-CAM an der Dreheinheit.

Durch die drei länglichen Aussparungen sind individuelle Befestigungen der DM-CAM möglich.

10.3 DM-CAM mit Kameraschraube

Die digitale Mikroskopkamera DM-CAM dient der Überwachung der Position der Sondenspitze und des Abstands von der Sondenspitze zum DUT.

Zur Befestigung der DM-CAM am DM-CAM holder.3 wird die Kameraschraube benötigt.

Durch Einschieben der Kamera in die Öffnung der Kameraschraube und Festdrehen der kleinen, silbernen Rändelschraube lässt sich die Kamera fixieren. Mit Hilfe der großen, silbernen Rändelschraube und der großen, schwarzen Kunststoff-Rändelmutter lässt sich die Kameraschraube am DM-CAM holder.3 befestigen.

Die DM-CAM wird an den HR10-Anschluss mit dem Schriftzug "Camera" am Z-Achsenturm des Scanners angeschlossen.

Durch Drehen der hinteren Rändelmutter der DM-CAM lässt sich diese fokussieren.

10.4 Spannpratzen

Die Spannpratzen dienen als Befestigungsteile zur individuellen Positionierung und Befestigung der Universalhalterung UH DUT oder eines DUTs auf dem T-Nutentisch des Scanners FLS 106.

Die Spannpratzen lassen sich über die Zylinderschraube M6 (Innensechskant 5 mm), und einem T-Nutenstein in einer T-Nut befestigen. Mit Hilfe der zwei Madenschrauben M8 (Innensechskant 4 mm) lassen sich Winkel und Höhe der Spannpratzen verändern.

10.5 UH DUT mit Krallen claw 01 und claw 02

Der Universalhalter UH DUT dient der Aufnahme des DUTs. Der Universalhalter ist 297 mm lang, 210 mm breit und 8 mm hoch.

Das (20 x 20) mm Raster aus Löchern mit M3 Gewinde ermöglicht die individuelle Positionierung des DUTs und die Verwendung von DUTs unterschiedlicher Größe.

Mit den zugehörigen Krallen claw 01 oder claw 02 wird der DUT fixiert. Je nach Höhe des DUTs kann zwischen den zwei Krallentypen gewählt werden.

10.6 GND 25 Halter

Der GND 25 Halter dient der Aufnahme der Groundplane GND 25.

Der GND 25 Halter kann entweder direkt auf dem T-Nutentisch oder auf dem Universalhalter UH DUT befestigt werden. Der GND 25 Halter sorgt mit Hilfe des Verdrehschutzes dafür, dass die GND 25 nicht verdrehen oder verrutschen kann.

10.7 Groundplane GND 25

Die Groundplane GND 25 wird auf dem GND 25 Halter installiert. Die Aussparung der GND 25 hat eine Länge und eine Breite von 103 mm.

Damit ermöglicht die GND 25 die Aufnahme von normierten Testleiterkarten (100 x 100 TEM-Zelle) oder eigenen Testleiterkarten.

10.8 Sondenhalterung SH 01

Die Sondenhalterung SH 01 ermöglicht die Aufnahme einer Nahfeldsonde. Die SH 01 besteht aus einem Befestigungswinkel, der Magnethalterung und der Sondenhülse.

Die Sondenhülse wird magnetisch gehalten und lässt sich z.B. zur einfachen Installation einer Nahfeldsonde schnell und komfortabel lösen. Durch die rückseitige Bohrung in der Sondenhülse kann sie wieder in der korrekten Position an der Magnethalterung angebracht werden. Dazu muss die Bohrung direkt über dem Zapfen an der Magnethalterung positioniert werden.

Die SH 01 besitzt zusätzlich die Funktion des Kollisionsschutzes:

- Trifft die Sonde bei der Fahrt nach unten auf Widerstand, schiebt sich die Sonde mit der Magnethalterung nach oben. Diese Verschiebung kann vom Scanner erkannt und die Bewegung gestoppt werden.
- Trifft die Sonde bei seitlicher Fahrt auf einen Widerstand, löst sich die Sondenhülse mit der Sonde von der Magnethalterung und fällt ab. Dadurch kann eine Beschädigung des DUTs in den meisten Fällen verhindert werden.

Zur Einrichtung des Kollisionsschutzes für die Fahrt nach unten (Kollisionskontrolle) lesen Sie bitte Abschnitt 18.3.

LANGER EMV-Technik DE-01728 Bannewitz mail@langer-emv.de www.langer-emv.de

11 Anlieferung

11.1 Transport

Der Scanner FLS 106 wird in einer maßgefertigten Transportkiste ausgeliefert. Der Scanner selbst besitzt eine Masse von 75 kg. Je nach Ausstattung bzw. Zielort können Maße und Gewicht der Transportkiste variieren. Daher kann das Gesamtgewicht hier nicht genau angegeben werden.

Gefahr durch hohes Gewicht!

Verletzungsgefahr für Personen durch runterfallendes Transportgut.

Sachschaden durch unangemessenen Transport möglich!

Die Transportkiste sollte auf Grund des hohen Gewichts in jedem Fall mit Hubwagen oder Gabelstapler transportiert werden.

11.2 Annahmeinspektion

Bei Erhalt der Ware muss die Verpackung auf Transportschäden untersucht werden. Im Falle von sichtbaren Transportschäden sollte dies auf dem Transportschein des Spediteurs festgehalten werden. Bei diesbezüglichen Problemen unbedingt den Lieferanten kontaktieren.

→ Mängel können nur innerhalb der Reklamationsfristen geltend gemacht werden.

11.3 Lagerung

Folgende Punkte sind bei der Lagerung der Transportkiste, die Scanner, Geräte und Zubehör enthält, zu beachten:

- trocken lagern
- nur in geschlossenen Räumen lagern
- auf sicheren, ebenen Untergrund lagern
- auf der korrekten Seite lagern (nicht Kippen)
- nicht stapeln bzw. nichts auf die Transportkiste stapeln

Fehlerhafte Lagerung kann zu Schäden am Scanner FLS 106, an Geräten und/oder am Zubehör führen.

11.4 Öffnen der Transportkiste

Stellen Sie sicher, dass die Transportkiste auf ebenem Boden steht. Zum Öffnen der Transportkiste muss entsprechendes Werkzeug verwendet werden, um Beschädigungen zu vermeiden. Es ist nicht erlaubt die Kiste mit roher Gewalt zu öffnen.

Beim Auspacken muss der Lieferumfang gewissenhaft auf Vollständigkeit überprüft werden sowie die im Lieferumfang enthaltenen Geräte und das Zubehör auf Transportschäden untersucht werden.

→ Mängel können nur innerhalb der Reklamationsfristen geltend gemacht werden.

11.5 Verpackung

Die Verpackung soll Transportschäden, Korrosion und andere Beschädigungen verhindern. Daher sollte diese erst kurz vor Aufbau entfernt werden. Die anschließende Entsorgung des Verpackungsmaterials muss nach den jeweils am Zielort geltenden Entsorgungsvorschriften erfolgen.

Hinweis: Das komplette Verpackungsmaterial sollte für den Fall, dass das Produkt zurück geschickt werden muss, aufbewahrt werden.
12 Aufbau und Vorbereitungen für die Inbetriebnahme des Scanners FLS 106

12.1 Vorbereitung für einen sicheren Betrieb des Scanners FLS 106

Ein sicherer Betrieb kann entweder mit der Sicherheitsumhausung SUH 106 oder durch räumliche Abtrennung gewährleistet werden (siehe Abschnitt 6.1).

Bei der Wahl des Aufstellortes ist zu berücksichtigen, welche der oben genannten Sicherheitslösungen realisiert werden soll.

12.2 Sicherheitshinweise zum Aufbau des FLS 106

Gefahr durch hohes Gewicht!

Verletzungsgefahr für Personen durch runterfallendes Transportgut.

Sachschaden durch unangemessenen Transport möglich!

Auf Grund des hohen Gewichts, muss der FLS 106 Scanner von mindestens zwei Personen und mit größter Vorsicht transportiert werden.

Gefahr durch inkorrekten Aufbau!

Fehlerhafter Aufbau kann zu Personen- und Sachschäden führen.

Sachschaden durch unangemessenen Aufbau möglich!

Entfernen Sie die Schutzfolie (Abschnitt 12.5) erst nachdem der Scanner an seinem Bestimmungsort aufgestellt wurde.

Der Scanner FLS 106 darf nur in geschlossenen Räumen bei ausreichenden Lichtverhältnissen aufgebaut und betrieben werden.

Vor der Installation muss sichergestellt werden, dass genug Platz zum Aufbau und zur Inbetriebnahme des IC-Scanners vorhanden ist.

Soll der **Betrieb mit räumlicher Abtrennung** erfolgen, ist der Platzbedarf für die Absperrung mit zu berücksichtigen.

Der Scanner sollte auf einer erhöhten Fläche (z.B. Tisch, Werkbank) installiert werden. Überprüfen Sie vor der Installation die Größe der Arbeitsfläche und die zulässige Traglast. Die Oberfläche muss eben, fest und sauber sein.

Soll der **Betrieb mit Sicherheitsumhausung SUH 106** erfolgen, muss beachtet werden, dass die Arbeitsfläche groß genug ist und dass ihre zulässige Traglast inklusive der SUH 106 nicht überschritten wird (Gesamtgewicht ca. 125 kg).

Sichern Sie den Scanner und alle Einzelkomponenten gegen Herunterfallen.

Sachschaden durch falsches Festziehen von Schrauben!

Ziehen Sie Schrauben von jeglichen Baugruppen nicht nachträglich fest. Alle Baugruppen, bei denen ein festes Anzugsdrehmoment vorgeschrieben ist, sind bereits montiert und angezogen.

Bei allen Anbauteilen welche nachträglich installiert werden, dürfen die entsprechenden Schrauben nur handfest angezogen werden. Dabei wird kein Drehmomentschlüssel benötigt.

12.3 Aufstellen des FLS 106

Der Scanner wird unter Beachtung der Hinweise aus Abschnitt 12.2 an seinem Einsatzort aufgestellt.

12.4 Akklimatisierung nach Umgebungswechsel

Kommt der Scanner von einer kalten in eine warme Umgebung, sollte beachtet werden, dass der Scanner sich vor der Inbetriebnahme erst akklimatisieren muss. Hierbei kann es zu einer Bildung von Kondenswasser auf der Oberfläche des Scanners kommen. Das Kondenswasser sollte zeitnah mit trockenen, sauberen Tüchern entfernt werden. Die Akklimatisierung kann je nach Temperaturunterschied bis zu mehreren Stunden dauern. Weitere Schritte sollten erst unternommen werden, wenn der Scanner die Umgebungstemperatur des Betriebsraumes angenommen hat.

12.5 Entfernung der Schutzfolie

Nachdem Sie den Scanner an seinem Einsatzort aufgestellt haben, entfernen Sie die Schutzfolie.

Gefahr durch Verwendung scharfkantiger Werkzeuge!

Gefahr für Personen durch Schnittverletzungen.

Verwenden Sie keine Werkzeuge wie Messer, Cutter oder Scheren zum Entfernen der Schutzfolie. Es besteht die Gefahr, dass scharfkantige, metallische Werkzeuge Sachschäden, wie Kratzer, am Scanner oder Beschädigungen an der Isolation von Leitungen sowie Verletzungen in Form von Schnittwunden verursachen.

12.6 Höhenanpassung des FLS 106

Unebenheiten der Arbeitsfläche können mit Hilfe der höhenverstellbaren Maschinenfüße ausgeglichen werden. Die verstellbare Höhe beträgt 3,8 mm.

Über die Höhenstellschraube (Innensechskant 4 mm) wird die gewünschte Höhe eingestellt. Die Füße werden über die Klemmschraube (Innensechskant 2,5 mm) in der Höhe fixiert. Anleitung zur Änderung der Fußhöhe:

- (1) Durch drehen der Klemmschraube gegen den Uhrzeigersinn wird die Verriegelung der Höhenverstellung gelöst.
- (2) Durch Drehen der Höhenstellschraube (Innensechskant 4,0 mm) im Uhrzeigersinn lässt sich der Scanner heben.
- (3) Durch Drehen der Höhenstellschraube gegen den Uhrzeigersinn lässt sich der Scanner senken.
- (4) Nach erfolgreicher Höhenverstellung wird die Klemmschraube im Uhrzeigersinn angezogen.

12.7 Entfernung des Transportschutzes von den Führungsschienen

Um einen ausreichenden Korrosionsschutz während des Transportes und der Lagerung zu gewährleisten, werden von der Langer EMV-Technik GmbH vor dem Verpacken alle Gleitschienen mit einer dünnen Fettschicht überzogen. Diese muss vor der Inbetriebnahme entfernt werden.

Zum Abwischen trockene Stoff- oder Papiertücher verwenden. Entsorgen Sie die verwendeten Tücher unter Beachtung der örtlichen und behördlichen Vorschriften.

Es sollte der Kontakt von Fett mit Kleidung, Haut, Haaren und Augen vermieden werden.

12.8 Not-Aus prüfen / entriegeln

Der Transport des Scanners FLS 106 erfolgt mit eingerastetem Not-Aus-Schalter. Solange dieser eingerastet ist, kann der Scanner nicht in Betrieb genommen werden. Daher sollte vor dem Einschalten geprüft werden, ob der Not-Aus eingerastet ist. Wenn dies der Fall ist, muss der Not-Aus-Knopf in Richtung der aufgedruckten Pfeile gedreht werden bis dieser entriegelt ist (siehe Bild 37).

13 Erstinbetriebnahme des Scanners FLS 106

Lesen Sie vor der ersten Inbetriebnahme unbedingt Kapitel 12.

Standardmäßiger Ablauf:

- a) Digitale Mikroskopkamera installieren und anschließen:
 - bei FLS 106 IC siehe Abschnitt 14.3.2 oder
 - bei FLS 106 PCB siehe Abschnitt 14.4
- b) Ggf. das Kabel der Dreheinheit auf korrekten Anschluss prüfen (ggf. anschließen) (Bild 40)
- c) Netzkabel anschließen (Bild 49)
- d) Sicheren Betrieb gewährleisten:
 Aufbau der räumlichen Abtrennung und Anschluss des externen Not-Aus-Schalters NA 5 (Abschnitt 14.1.2) oder
 - Aufbau und Anschluss der Sicherheitsumhausung SUH 106 (Abschnitt 14.1.1)
- e) Not-Aus-Schalter prüfen und ggf. entriegeln (Abschnitt 12.8)
- f) Messgerät am SMA-Ausgang vom Bedienpult anschließen (siehe Liste der von der Software CS-Scanner unterstützten Messgeräte) (Abschnitt 14.7)
- g) Scanner mit PC über USB-Kabel Typ A/B verbinden (Abschnitt 14.6)
- h) Ggf. Sicherheitsumhausung SUH 106 schließen
- i) PC einschalten und hochfahren
- j) Scanner einschalten und Treiber auf PC installieren (Abschnitt 15.2)
- k) Software ChipScan-Scanner auf PC installieren (Abschnitt 15.3)
- I) Software ChipScan-Scanner starten und angeschlossene Geräte ermitteln (Abschnitt 15.4)
- m) Scanner über Software ChipScan-Scanner kalibrieren und testen (Abschnitt 15.4 Punkt 4)

14 Installation

14.1 Gewährleistung des sicheren Betriebs

14.1.1 Betrieb mit Sicherheitsumhausung SUH 106

Die Sicherheitsumhausung schützt den Benutzer und verhindert das Arbeiten am Scanner während dieser im Betrieb ist.

Die Sicherheitsumhausung SUH 106 ist gemäß zugehöriger Bedienungsanleitung aufzubauen und das Anschlusskabel der SUH 106 an der Buchse "ext. Stop" des Scanners FLS 106 anzuschließen.

Für den Betrieb des Scanners muss der Not-Aus-Schalter am Scanner entriegelt und die Tür der SUH 106 geschlossen sein.

14.1.2 Betrieb mit räumlicher Abtrennung und externem Not-Aus-Schalter NA 5

Eine räumliche Abtrennung schützt den Benutzer und kann das Arbeiten am Scanner, während dieser im Betrieb ist, verhindern.

Die räumliche Abtrennung muss folgende Anforderungen erfüllen:

- stabile Gesamtkonstruktion aus beständigem Material
- eindeutig erkennbar als Abtrennung (ggf. Signalfarben verwenden)
- die Abtrennung muss durchgehend um den Scanner herum gewährleistet sein
- der Abstand zum Scanner muss ausreichen, um ein Eingreifen in den Scanner sicher zu unterbinden

Die räumliche Abtrennung kann z.B. erfolgen durch Abstandsbarrieren mit Absperrbändern, Schutzzaunsysteme, Lichtschranken oder Lichtgitter.

Der externe Not-Aus-Schalter NA 5 ist außerhalb der räumlichen Abtrennung so zu platzieren, dass dieser jederzeit sichtbar und erreichbar ist.

Der D-Sub-Stecker des externen Not-Aus-Schalters muss vor der Inbetriebnahme des Scanners angeschlossen werden, da ansonsten eine Fehlermeldung erscheint und der Betrieb unterbunden wird.

14.2 Kabel der Dreheinheit prüfen

Bitte prüfen Sie, ob die Dreheinheit am Anschluss "rot. Axis" am Z-Achsenturm angeschlossen ist.

Bild 40: Kabel der Dreheinheit am Anschluss "rot. Axis"

14.3 Installation der digitalen Mikroskopkamera DM-CAM am FLS 106 IC

14.3.1 Installation der Halterung für Mikroskopkamera DM-CAM holder.3

Der DM-CAM holder.3 (Bild 41) zur Befestigung der Kamera wird mit zwei schwarzen Rändelschrauben M4 an der Dreheinheit befestigt.

14.3.2 Installation der digitalen Mikroskopkamera DM-CAM

Mit Hilfe der großen silbernen Rändelschraube und der schwarzen Kunststoff-Rändelmutter lässt sich die Kameraschraube am DM-CAM holder.3 befestigen. Die digitale Mikroskopkamera wird in die Öffnung der Kameraschraube eingeführt und an der gewünschten Stelle mittels der kleinen, silbernen Rändelschraube fixiert. Die Mikroskopkamera kann vor oder nach der Befestigung des DM-CAM holder.3 installiert werden.

Das Kabel der DM-CAM wird anschließend an den HR10-Anschluss mit der Bezeichnung "Camera" am Z-Achsenturm angeschlossen (Bild 44).

14.4 Installation der digitalen Mikroskopkamera DM-CAM am FLS 106 PCB

Die DM-CAM wird beim FLS 106 PCB am Kameraarm KA 220 befestigt (Bild 47). Dazu muss die DM-CAM in die Öffnung der Kameraschraube, welche sich am Kameraarm befindet, gesteckt und mit der kleinen, silbernen Rändelschraube fixiert werden.

Durch lösen des Zentralspanngriffs kann die DM-CAM individuell positioniert werden.

Danach kann der HR10-Stecker des Anschlusskabels der DM-CAM mit dem Anschluss "Camera" am Z-Achsenturm des FLS 106 PCB verbunden werden (Bild 48).

14.5 Anschluss des Kaltgerätekabels

Die Stromversorgung wird über das mitgelieferte Kaltgerätekabel hergestellt (Bild 49).

14.6 Anschluss eines Computers

Zum Verbinden des Scanners mit einem Rechner, wird ein USB 2.0 Kabel Typ A/B (Fully Rated, Hi-Speed, Maximallänge: 2 Meter) verwendet. Der USB-Typ-A-Stecker wird an den PC und der USB-Typ-B-Stecker an den USB-Typ-B-Anschluss (Bild 50) am Bedienpult des Scanners FLS 106 angeschlossen.

14.7 Anschluss eines Messgerätes für Nahfeldscans am Beispiel eines Spektrumanalysators

Um einen Spektrumanalysator mit dem Scanner FLS 106 zu verbinden, wird ein Ende des entsprechenden Messkabels an den HF-Eingang des Spektrumanalysators und das andere Ende (SMA-Stecker) an den SMA-Anschluss "RF out" am Bedienpult des FLS 106 angeschlossen (Bild 51).

Eine Liste der von der Software ChipScan-Scanner unterstützten Messgeräte finden Sie im Anhang der Bedienungsanleitung der Software ChipScan-Scanner oder auf der Webseite www.langer-emv.de¹.

¹ www.langer-emv.de/fileadmin/ChipScan-ESA%20Supported%20Spectrum%20Analyzers.pdf

14.8 Einschalten des Scanners FLS 106

Um den Scanner FLS 106 ordnungsgemäß einzuschalten, muss der Kippschalter auf der Rückseite des Scanners in Position "I" betätigt werden.

Sobald der FLS 106 eingeschaltet wurde, leuchtet die LED mit dem Schriftzug "Power" am Bedienpult.

15 Software-Installation

15.1 Hinweis zur Software-Installation

Zur Software-Installation muss die Inbetriebnahme, wie in Kapitel 13 beschrieben, durchgeführt werden.

15.2 Installation des Scanner-Treibers

Der Scanner-Treiber wird nicht automatisch von Windows installiert, wenn der Scanner FLS 106 mit dem verwendeten PC verbunden wird und muss daher von Hand installiert werden.

Ablauf:

- a) Scanner mit PC über USB-Kabel Typ A/B verbinden (Kapitel 14.6)
- b) PC einschalten und hochfahren
- c) Scanner einschalten (Kapitel 14.8)
- d) USB-Stick anstecken

Danach am PC:

- 1) Systemsteuerung von Windows öffnen, nach Geräte-Manager suchen und öffnen.
- 2) Im Geräte-Manager unter "Andere Geräte" den Eintrag "Trinamic Stepper Device" doppelt anklicken.

3) Im geöffneten Eigenschaftsfenster den "Treiber"-Tab auswählen und auf "Treiber aktualisieren…" drücken.

Eigenschaften von Trinamic Stepper Device	
Allgemein Treiber Details	
Trinamic Stepper Device	
Treiberanbieter: Unbekannt	
Treiberdatum: Nicht verfügbar	
Treiberversion: Nicht verfügbar	
Signaturgeber: Nicht digital signiert	
Treiberdetails Einzelheiten über Treiberdateien anzeigen	
Treiber aktualisieren Treibersoftware für dieses Gerät aktualisieren	
Vorheriger Treiber Vorheriger Treiber Nach der Treiberaktualisierung nicht ordnungsgemäß funktioniert.	
Deaktivieren Das ausgewählte Gerät deaktivieren.	
Deinstallieren Treiber deinstallieren (Erweitert)	
OK Abbrechen	
Bild 54: Treiber aktualisieren	

4) Im daraufhin geöffneten Dialog-Fenster die Option "Auf dem Computer nach Treibersoftware suchen." auswählen.

5) Auf die erschienene "Durchsuchen"-Schaltfläche klicken, den USB-Stick auswählen und danach den Unterordner "Driver" auswählen und die Schaltfläche "OK" betätigen.

G	Treibersoftware aktualisieren - Trinamic Stepper Device		
	Auf dem Computer nach Treibersoftware suchen		
	An diesem Ort nach Treibersoftware suchen: E:\Driver	Durchsuchen	
	☑ Unterordner einbeziehen		
Bild 56: Den mitgeliefer	ten USB-Stick nach dem Treiber durchsuchen		

6) Der Treiber wird nun installiert. Anschließend sollte im Geräte-Manager der Eintrag "TRINAMIC Stepper Device" unter "Anschlüsse" eingetragen sein.

15.3 Installation der Software ChipScan-Scanner

Zusätzliche Hinweise zur Installation der Software ChipScan-Scanner finden Sie in der Bedienungsanleitung (software manual) der Software mit dem Dateinamen "chipscan.pdf" in Kapitel 1. Die Bedienungsanleitung befindet sich im Ordner "Documentation" auf dem USB-Stick.

Die Installations-Datei befindet sich im Ordner "ChipScan-Scanner".

- 1. Zur Installation gehen Sie in den Ordner "ChipScan-Scanner" und klicken Sie doppelt auf die gewünschte Installations-Datei. Sie können zwischen einer 32-Bit- und einer 64-Bit-Version wählen.
- 2. Folgen Sie den Anweisungen auf dem Bildschirm.
- 3. Schließen Sie die Installation ab.

15.4 Inbetriebnahme des Scanners FLS 106 mit der Software ChipScan-Scanner

Stellen Sie sicher, dass die Punkte a - k in Kapitel 13 durchgeführt wurden.

Die Bedienungsleitung der Software ChipScan-Scanner mit zusätzlichen Informationen zu den einzelnen Schritten kann von der geöffneten Software heraus über den Eintrag "Manual" im "Help"-Menü geöffnet werden.

Um zu prüfen, ob der Scanner FLS 106 funktioniert, müssen folgende Schritte durchgeführt werden:

- 1. Einschalten
 - a. des Scanners FLS 106
 - b. des PC (mit der installierten Software ChipScan-Scanner)
- 2. Software ChipScan-Scanner starten

Langer EMV-Technik GmbH ChipScan-Scanner 4.0.25 -	Untitled.csd		
File View Devices Settings Window Help			
		Device Control	8 ×
		Settings	
		Center 200 MHz	
		Span 400 Minz	
		REF 77 dBµV	
*		ATT 0 dB	
		SWT 116 ms	
*		RBW 10 kHz	
		VBW 10 kHz	
		Mode	▼ 3 ◆
Frequency	0	Max Value	Set
		Tracking Generator	
		Enabled 87 dB	1.0V
			- Manadian Kan
		log	rivormalization
		Correction	
		Enabled Select	
		Acquisition	
		Live Trace	Hardcopy
		Take	Measure
ata Set Manager		🗗 🗙 Scanner	
Name	Туре		10 mm
			20 °
			Depth Test
			Camera Off
			L
		Camera Brightness	
			Calibrate
(: 0.000 mm, Y: 0.000 mm, Z: 0.000 mm			
ild 58: Benutzeroberfläche der S	Software ChipsScan-Scanner		

- 3. Software ChipScan-Scanner mit Scanner FLS 106 verbinden:
 - Innerhalb der Software ChipScan-Scanner auf den Eintrag "Device Manager…" im Menü "Devices" klicken
 - Die Schaltfläche "Detect Devices" anklicken
 - Die Suche nach angeschlossenen Geräten dauert eine gewisse Zeit. Danach sollten im Abschnitt "Identified devices used for measurement" folgende Einträge sichtbar sein:
 - In der Auswahlbox "Video Device" -> Name der angeschlossenen Kamera
 - In der Auswahlbox "Scanner" -> Name des angeschlossenen Scanners
 - In der Auswahlbox "Spectrum Analyzer" -> Name des angeschlossenen Spektrumanalysators

evices to scan for		
Spectrum Analyzer		Scanner
RS232 All COM Ports	~	
GPIB		RS232 All COM Ports
LAN VXI IP or Hostname		
		All Scanners
All Spectrum Analyzers	•	
All Spectrum Analyzers	•	
All Spectrum Analyzers Detect Devices		Load Last Setup
All Spectrum Analyzers Detect Devices Jentified devices used for measure	ment	Load Last Setup
All Spectrum Analyzers Detect Devices dentified devices used for measure pectrum Analyzer	ment Not Found	Load Last Setup
All Spectrum Analyzers Detect Devices Jentified devices used for measure pectrum Analyzer ideo Device	ment Not Found Not Found	Load Last Setup

- Optionale Schritte zur Beschleunigung der Geräteerkennung: Innerhalb vom geöffneten Fenster "Device Manager":
 - Im Abschnitt "Scanner" in der Auswahlbox "RS232" die COM-Schnittstelle auswählen, an welcher der Scanner angeschlossen ist.
 - o In der Auswahlbox unterhalb "RS232" den Eintrag "Langer FLS 106" auswählen
 - Anschließend die Schaltfläche "Detect Devices" anklicken.
- Nach erfolgreicher Suche den "Device Manager" über das Kreuz in der rechten oberen Ecke schließen.

Hinweis: Weiterführende Informationen zur Geräteerkennung können dem Kapitel 4 der Bedienungsanleitung der Software ChipScan-Scanner entnommen werden.

- 4. Scanner FLS 106 kalibrieren
 - Der Scanner fährt mit Klick auf "Calibrate" (untere rechte Ecke) in seine Grundposition. Dies ist bei jedem Start der Software ChipScan-Scanner, nach jedem Einschalten des Scanners und nach jedem Stillsetzen des Scanners mit dem Not-Aus notwendig.
 - Anschließend kann der Scanner mit den Pfeiltasten des Steuerkreuzes in die gewünschte Position gefahren werden.
- 5. "Video View" öffnen
 - Um die Übertragung der digitalen Mikroskopkamera zu verfolgen, auf den Eintrag "Video…" im Menü "Devices" klicken.
 - Die gewünschte Helligkeit der Kamerabeleuchtung kann über den Regler "Camera Brightness" eingestellt werden (befindet sich rechts unten über "Calibrate").
 - Am hinteren Ende der DM-CAM kann mit Hilfe der Stellmutter die Schärfe eingestellt werden.

16 Befestigung des Prüflings

16.1 Befestigung eines Prüflings mit Spannpratzen

Die Spannpratzen werden mit Hilfe der Zylinderschrauben M6 (Innensechskant 5 mm) und den T-Nutensteinen in ausgewählten T-Nuten befestigt.

Mit Madenschrauben M8 (Innensechskant 4 mm) lässt sich der Winkel und die Höhe der Spannpratzen verändern.

Hinweis: Werden die Spannpratzen unter zu hohem Druck angeschraubt, kann es zu Kratzern und/oder Spuren auf dem T-Nutentisch kommen. Ziehen Sie die Schrauben nur handfest an.

Ablauf:

Den ersten T-Nutenstein in die gewünschte T-Nut einführen und an die gewünschte Stelle schieben.

Bild 61: T-Nutenstein in die T-Nut einführen

Danach den Spannpratzen oberhalb des **T-Nutensteins** platzieren und mit der Zylinderschraube M6 lose befestigen.

Über die Madenschrauben die Höhe und den Winkel anpassen, sodass der Prüfling unter den Überhang des Spannpratzens geschoben werden kann. Den Prüfling ausrichten und anschließend mit Hilfe der Zylinderschraube M6 den Spannpratzen fixieren.

Die oberen Schritte müssen für die zweite Spannpratze auf der gegenüberliegenden Seite des Prüflings wiederholt werden.

Prüfen Sie, dass der Prüfling ausreichend fixiert ist, sodass er nicht verrutschen kann.

16.2 Befestigung einer Leiterkarte auf Universalhalter UH DUT

16.2.1 Installation UH DUT

Hinweis: Werden die Spannpratzen unter hohen Druck festgeschraubt, kann es zu Kratzern und/oder Spuren auf dem T-Nutentisch kommen. Gehen Sie mit Sorgfalt vor.

Zuerst den Universalhalter UH DUT auf dem T-Nutentisch genau zwischen zwei T-Nuten platzieren (Bild 65).

Je einen T-Nutenstein in die T-Nuten direkt neben dem UH DUT einführen und bis zur Mitte des UH DUT schieben.

Danach die Spannpratzen oberhalb der T-Nutensteine platzieren und mit der Zylinderschraube M6 lose befestigen.

Über die Madenschrauben die Höhe und den Winkel je nach Bedarf anpassen. Mit Hilfe der Zylinderschraube M6 die Spannpratzen fixieren.

Prüfen Sie nach der Installation des Universalhalters UH DUT, dass dieser nicht verrutschen kann. Ggf. müssen die Schrauben M8 vorsichtig fester angezogen werden.

16.2.2 Befestigung der Leiterkarte

Zuerst wird die Leiterkarte in die Mitte des UH DUTs gelegt.

Je nach Höhe der Baugruppe entweder die Krallen claw 01 oder die Krallen claw 02 verwenden. Die Kralle claw 01 ermöglicht die Aufnahme von Leiterkarten mit einer Höhe kleiner als 8 mm. Die Kralle claw 02 ermöglicht die Aufnahme von Leiterkarten mit einer Höhe kleiner als 14 mm.

Die Krallen sind stufenlos justierbar und werden mit den Schrauben M3 (Länge 12 mm, Innensechskant 2,5 mm) in den Löchern des UH DUT fixiert.

Die Leiterkarte sollte mit jeweils zwei Krallen auf gegenüberliegenden Seiten befestigt werden (Bild 67).

Die Krallen müssen so befestigt werden, dass die Leiterkarte nicht mehr verschoben werden kann. Dazu können zusätzlich die übrigen Krallen genutzt werden.

16.3 Befestigung der Groundplane GND 25 für IC-Messungen

16.3.1 Installation des GND 25 Halters

Zuerst werden zwei T-Nutensteine in die gleiche T-Nutenöffnung gesteckt und positioniert (Bild 68).

Anschließend wird der GND 25 Halter auf den T-Nutentisch über die T-Nutensteine gelegt (Bild 69). Danach werden die Senkschrauben M6 (Innensechskant 4 mm, DIN 7991) nacheinander in die vorgesehenen Öffnungen des GND 25 Halters gesteckt und mit den T-Nutensteinen verschraubt.

Bild 68: T-Nutenstein in die vorgesehene T-Nut platzieren

Der Verdrehschutz kann je nach Bedarf in einem der vier äußeren Löcher befestigt werden. Er sorgt dafür, dass die installierte Groundplane GND 25 sich nicht ungewollt verdreht.

16.3.2 Installation der Groundplane GND 25

Die Groundplane GND 25 (Bild 71) wird auf den GND 25 Halter gelegt, sodass sich der Verdrehschutz in der gewünschten Einkerbung, an der Unterseite der GND 25, befindet. Je nach Bedarf kann die GND 25 schnell um 45° oder 90° gedreht werden, indem eine andere Einkerbung genutzt wird.

16.3.3 Sicherheitshinweise zur Groundplane GND 25

Die GND 25 liegt lose auf dem GND 25 Halter. Das bedeutet, dass die installierte GND 25 z.B. beim Transport des IC-Scanners ab- oder herunterfallen kann.

Entfernen Sie immer die Groundplane GND 25, bevor Sie den IC-Scanner FLS 106 transportieren.

17 Installation ICR-Nahfeldmikrosonde

17.1 Sicherheitshinweise zur Installation einer ICR-Nahfeldmikrosonde

Die Sondenspitze der ICR-Nahfeldmikrosonde ist hochempfindlich gegen mechanische Belastungen!

Mögliche Schäden durch unsachgemäße Handhabung!

Entfernen Sie die Schutzkappe der ICR-Nahfeldmikrosonde (kurz: ICR-Sonde) erst nach der Installation oder kurz vor der Messung.

Vermeiden Sie es, die Tastspitze zu berühren, auch mit dem Prüfling!

Gehen Sie mit der ICR-Sonde jederzeit äußerst vorsichtig um.

17.2 Verlegung der Anschlusskabel

Zuerst werden die zwei Schrauben der Kabelfixierung auf dem Drehring abgeschraubt und danach wird die obere Hälfte der Kabelfixierung zur Seite gelegt. (siehe Bild 72).

Das kurze Messkabel SMA-SMA RA wird zuerst an der SMA-Kupplung angeschraubt (Bild 73) und dann wie in Bild 73 gezeigt auf dem Drehring platziert.

Im Anschluss daran wird das Kabel SSMB-SSMB an den SSMB-Anschluss auf der linken Seite der Dreheinheit unterhalb der SMA-Kupplung befestigt (Bild 75) und wie in Bild 76 gezeigt auf dem Drehring platziert.

Nun kann das lange Messkabel SMA-SMA RA an der SMA-Kupplung befestigt werden (Bild 77).

Die Kabel SMA-SMA und SSMB-SSMB können jetzt in die offene Kabelfixierung gelegt und mit Hilfe der oberen Hälfte der Kabelfixierung festgeschraubt werden (Bild 78). Dabei muss beachtet werden, dass genug Spielraum für die Kabel bleibt, um den Drehring 180° in beide Richtungen drehen zu können.

17.3 Anschluss der ICR-Nahfeldmikrosonde

Hinweis: Voraussetzung für den korrekten Anschluss ist die korrekte Verlegung der Kabel nach Abschnitt 17.2.

Die ICR-Nahfeldmikrosonde wird auf dem Drehring der Dreheinheit des Scanners FLS 106 IC installiert. Dazu werden zunächst die Rändelschrauben vom Drehring entfernt.

Es wird empfohlen, zuerst beide Kabel an die ICR-Sonde anzuschließen und danach die Sonde am Drehring zu befestigen.

Schließen Sie das Messkabel SMA-SMA am Anschluss "RF out" der ICR-Sonde (Bild 80) und direkt danach das Kabel SSMB-SSMB am SSMB-Anschluss der ICR-Sonde (Bild 81) an.

Nun wird die ICR-Sonde mit Hilfe der Rändelschrauben M3 auf dem Drehring der Dreheinheit befestigt (Bild 82).

Hinweis: Die Schutzkappe der ICR-Sonde sollte erst zur Messung entfernt werden.

Um die Schutzkappe entfernen zu können, muss der gelbe Knopf auf der Vorderseite gedrückt und die Schutzkappe nach oben abgezogen werden (Bild 84).

17.4 Installation des Bias-Tees BT 706

Zur Spannungsversorgung der ICR-Sonde ist es notwendig, den Bias-Tee BT 706 (Bild 85) vorzuschalten.

Der Bias-Tee wird am RF in-Eingang am Z-Achsenturm des Scanners von Hand befestigt.

Wichtig: Nur mit Hand befestigen, um eine Beschädigung zu vermeiden!

Das an der SMA-Kupplung angeschlossene Messkabel SMA-SMA RA wird mit dem SMA-Eingang des BT 706 verbunden (Bild 87).

Das Kabel für die Spannungsversorgung des Bias-Tees wird an den "12 V / DC"-Eingang des Bias-Tees und am "12 V DC"-Anschluss am Z-Achsenturm des Scanners angeschlossen (Bild 88).

17.5 Kollisionskontrolle der ICR-Sonde

Die Kollisionskontrolle ist in Verbindung mit einer ICR-Sonde eine Schutzfunktion, um bei versehentlichem Berühren des Prüflings mit der ICR-Sonde Schaden zu begrenzen.

Während des Betriebes darf die ICR-Sonde den Prüfling niemals berühren. Es ist nicht gestattet die Kollisionskontrolle zur Positionierung der ICR-Sonde zu benutzen.

Die Kollisionskontrolle muss in der Software ChipScan-Scanner über die Checkbox "Depth Test" aktiviert werden. Das ist nur möglich, wenn das Tiefentestkabel SSMB-SSMB mit dem SSMB-Anschluss der ICR-Sonde und dem SSMB-Anschluss an der Dreheinheit verbunden ist (Bild 75, Bild 82) und Stromversorgung der ICR-Sonde über den Bias-Tee hergestellt wurde.

Mit aktivierter Kollisionskontrolle wird die Fahrt der Dreheinheit in Abwärtsrichtung gestoppt, falls die Spitze der ICR-Sonde z.B. mit der Oberfläche eines DUTs in Kontakt kommt.

18 Installation einer Nahfeldsonde mit der Sondenhalterung SH 01

18.1 Installation Nahfeldsonde am FLS 106 IC

Als erstes wird ein Ende des Kabels SSMB-SSMB am SSMB-Anschluss der Dreheinheit angeschlossen und auf den Drehring der Dreheinheit wie in Bild 89 platziert

Als nächstes wird die Sondenhalterung SH 01 mit Hilfe der Rändelschrauben M3 auf dem Drehring der Dreheinheit befestigt (Bild 91).

Anschließend wird das freie Ende des Kabels SSMB-SSMB an den SSMB-Anschluss der Sondenhalterung SH 01 (Bild 92) befestigt.

Nun wird die Nahfeldsonde in die Sondenhülse der Sondenhalterung gesteckt und die kleine Schraube an der Außenseite der Sondenhülse mit der Hand vorsichtig angezogen (Bild 94).

Zur leichteren Montage kann die Sondenhülse auch abgezogen werden, da sie magnetisch gehalten wird (Abschnitt 10.8). Mit Hilfe der rückseitigen Bohrung lässt sich die Sondenhülse wieder an der richtigen Position an der Magnethalterung der SH 01 befestigen.

Im Anschluss muss die leichte Beweglichkeit der installierten Nahfeldsonde in Z-Richtung geprüft werden. Dadurch wird das korrekte Abschalten bei einer Kollision sichergestellt. Hierzu die Nahfeldsonde vorsichtig per Hand nach oben ziehen und Beweglichkeit prüfen.

18.1.1 Direkter Anschluss einer Nahfeldsonde am Scanner FLS 106 IC

Bei Betrieb ohne Vorverstärker wird das HF-Messkabel am Messausgang der Nahfeldsonde und direkt am "RF in"-Eingang am Z-Achsenturm des Scanners angeschlossen (Bild 95).

LANGER EMV-Technik

DE-01728 Bannewitz mail@langer-emv.de www.langer-emv.de

FLS 106 IC set / FLS 106 PCB set

Als Alternative kann die Nahfeldsonde auch über die SMA-Kupplung (an der Dreheinheit) am Scanner angeschlossen werden. Dafür werden zwei HF-Messkabel benötigt. Es wird das erste HF-Messkabel mit dem Ausgang der Sonde (Bild 96) und der SMA-Kupplung (Bild 97) und das zweite HF-Messkabel mit der SMA-Kupplung (Bild 98) und dem "RF in"-Anschluss am Z-Achsenturm verbunden (Bild 99).

18.1.2 Anschluss Nahfeldsonde mit Vorverstärker

Hinweis: Die Wahl des richtigen Vorverstärkers hängt von der Messaufgabe und der verwendeten Nahfeldsonde ab. Bei Fragen nehmen Sie bitte Kontakt mit uns auf (Kapitel 25).

Der SMA-Ausgang des Vorverstärkers wird am "RF in"-Eingang am Z-Achsenturm des Scanners angeschlossen (Bild 101).

Das HF-Messkabel der Nahfeldsonde wird an den SMA-Eingang des Vorverstärkers angeschlossen (Bild 102).

An den "12 V DC"-Anschluss am Z-Achsenturm wird das Kabel zur Spannungsversorgung des Vorverstärkers angeschlossen (Bild 103).

18.2 Installation Nahfeldsonde am FLS 106 PCB

Als erstes wird die Sondenhalterung SH 01 mit Hilfe der zwei M3 Senkkopfschrauben auf dem Aluminium-Befestigungswinkel angeschraubt.

Anschließend wird der SSMB-Stecker des Kabels SSMB-HR10 an den SSMB-Anschluss der Sondenhalterung SH 01 (Bild 105) befestigt. Der HR10-Stecker wird an den Anschluss "rot. Axis" am Z-Achsenturm angeschlossen (Bild 107).

Anschließend wird die Nahfeldsonde in die Sondenhülse der Sondenhalterung gesteckt und die Schraube an der Außenseite der Sondenhülse mit der Hand vorsichtig angezogen (Bild 107).

LANGER EMV-Technik DE-01728 Bannewitz mail@langer-emv.de www.langer-emv.de

FLS 106 IC set / FLS 106 PCB set

Hinweis: Zur leichteren Montage kann die Sondenhülse auch abgezogen werden, da sie magnetisch gehalten wird (Abschnitt 10.8). Mit Hilfe der rückseitigen Bohrung lässt sich die Sondenhülse wieder an der richtigen Position an der Magnethalterung der SH 01 befestigen.

18.2.1 Direkter Anschluss einer Nahfeldsonde am Scanner FLS 106 PCB

Bei Betrieb ohne Vorverstärker wird das HF-Messkabel am Messausgang der Nahfeldsonde und direkt am "RF in"-Eingang am Z-Achsenturm des Scanners angeschlossen (Bild 108).

18.2.2 Anschluss Nahfeldsonde mit Vorverstärker

Hinweis: Die Wahl des richtigen Vorverstärkers hängt von der Messaufgabe und der verwendeten Nahfeldsonde ab. Bei Fragen nehmen Sie bitte Kontakt mit uns auf (Kapitel 25).

Der SMA-Ausgang des Vorverstärkers wird am "RF in"-Eingang am Z-Achsenturm des Scanners angeschlossen (Bild 109).

Wichtig: Befestigen Sie den Vorverstärker nur von Hand, um Beschädigungen zu vermeiden!

Das HF-Messkabel der Nahfeldsonde wird an den SMA-Eingang des Vorverstärkers angeschlossen (Bild 110).

An den "12 V DC"-Anschluss am Z-Achsenturm wird das Kabel zur Spannungsversorgung des Vorverstärkers angeschlossen (Bild 111).

18.3 Kollisionskontrolle der Nahfeldsonde

Die Kollisionskontrolle muss in der Software ChipScan-Scanner über die Checkbox "Depth Test" aktiviert werden.

Funktion der Kollisionskontrolle:

Trifft die Sonde bei der Fahrt nach unten auf Widerstand, schiebt sich die Sonde mit der Magnethalterung nach oben. Diese Verschiebung wird vom Scanner erkannt und die Bewegung gestoppt.

Dieser Mechanismus wird von der Software ChipScan-Scanner genutzt, um die Bewegungsstrategie "Volume with vertical collision detection" auszuführen. Für weitere Informationen lesen Sie bitte Abschnitt 5.1.3 der Bedienungsanleitung von ChipScan-Scanner.
19 Hinweise zum Betrieb des Scanners FLS 106

19.1 Überprüfung des Messaufbaus vor jeder Benutzung

Vor jeder Messung sollte eine Sichtprüfung des Scanners, der Anbauteile, Messinstrumente, des DUTs und Kabelführungen durchgeführt werden. Sollten Schäden erkennbar sein, müssen diese vor Inbetriebnahme des Scanners beseitigt werden. Nehmen Sie ggf. Kontakt mit der Langer EMV-Technik GmbH auf (Kapitel 25).

19.2 Exakte Höhe der Sondenspitze über dem DUT einstellen

In vielen Fällen ist es notwendig, die Höhe zwischen Sondenspitze und DUT exakt einzustellen.

Die Sondenspitzen – insbesondere die Spitzen von ICR-Sonden – sind hochempfindlich gegen mechanische Belastung!

Mögliche Sachschäden durch unvorsichtige oder unsachgemäße Handhabung oder fehlerhafte Scannereinstellungen!

Vermeiden Sie es, die Tastspitze zu berühren, auch mit dem Prüfling!

Beobachten Sie den Abstand zwischen Prüfling und Sondenspitze sorgfältig!

Verwenden Sie geeignete Werte für die Abwärtsbewegung, um einen Kontakt zwischen Prüfling und Sondenspitze zu vermeiden.

Der Prüfling muss parallel zum T-Nutentisch ausgerichtet sein, um zu verhindern, dass die Sondenspitze bei horizontalen Bewegungen die Oberfläche des Prüflings berührt, insbesondere wenn der Abstand zwischen Sondenspitze und Prüfling sehr gering ist.

Die folgenden Anweisungen helfen bei der Umsetzung:

- 1. Positionieren Sie die Sonde in sicherer Höhe über der gewünschten Stelle.
- Legen Sie das Prisma (Bild 112) neben die gewünschte Stelle. Die abgeschrägte Fläche des Prismas wird als Spiegel verwendet, um den vertikalen Abstand zwischen Sondenspitze und DUT-Oberfläche mit Hilfe der DM-CAM beobachten zu können. Die DM-CAM muss so justiert werden, dass der vertikale Abstand zwischen Sondenspitze und DUT über das Prisma eindeutig erkannt werden kann.
- 3. In angemessenen Schritten die Sonde nach unten bewegen bis die gewünschte Höhe erreicht ist. Dabei ist stets der Abstand zwischen Sondenspitze und DUT über die DM-CAM zu beobachten und der Fokus der DM-CAM ggf. nach zu justieren.
- 4. Je geringer der Abstand der Sondenspitze zum DUT, desto kleiner sollte die Schrittweite sein. Die kleinste einzustellende Schrittweite beträgt 20 µm.

5. Wenn die gewünschte Höhe erreicht wurde, wird empfohlen, die weitere Bewegung der Sonde nach unten zu sperren. Dazu ist es möglich, im Menü von ChipScan-Scanner unter "Settings" -> "Scanner" -> "Vertical Motion" die Fahrbefehle auszuschalten.

19.3 Abschätzung der Dauer einer Messung mit dem Scanner FLS 106

19.3.1 Anzahl Messpunkte

Die Dauer einer Messung mit dem Scanner erhöht sich linear mit der Anzahl an eingestellten Messpunkten.

19.3.2 Bewegungsabstand

Je kleiner der Abstand zweier benachbarter Messpunkte ist, desto weniger Zeit wird für die Bewegung zwischen den beiden Messpunkten benötigt.

19.3.3 Sweeptime

Je größer die Sweeptime des Spektrumanalysators ist, desto mehr Zeit wird für die Messung benötigt. Es sollte bedacht werden, dass die Sweeptime alleine ein Vielfaches der Zeit für das Bewegen und Übertragen der Messkurve beträgt. Besonders wenn ein großer darzustellender Span und eine kleine Resolution Bandwidth verwendet werden, kann es mehrere Sekunden dauern. Außerdem wird die Sweeptime bei der Benutzung von "Average" mit dem eingestellten Wert bei "Average Count" multipliziert.

19.3.4 Übertragungszeit

Die Zeit zur Übertragung einer Messkurve vom Spektrumanalysator zum PC ist hauptsächlich davon abhängig, welche Übertragungsschnittstelle verwendet wird. Bei der Verwendung von GPIB und VXI dauert die Übertragung einer Messkurve mit 1000 Messpunkten nur Millisekunden. Im Gegensatz dazu dauert die Übertragung mehrere Sekunden, wenn die RS232-Schnittstelle mit einer geringen Baudrate verwendet wird.

19.4 Speichervoraussetzung für die Messung

Für die Speicherung und Darstellung der Messergebnisse eines Scans wird sowohl ein ausreichend großer Festplattenspeicher als auch ein ausreichend großer Arbeitsspeicher benötigt.

Der Speicherbedarf hängt ab von:

- Anzahl der Messpunkte im Raum
- Anzahl der points per trace
- vertikale Auflösung des Spektrumanalysators

Bei der Verwendung von Windows als 32-Bit-Betriebssystem, muss beachtet werden, dass einzelnen Programmen nur maximal 2 GB Arbeitsspeicher zugewiesen wird.

20 Nach Beendigung der Messung

Nach Beendigung sollte die Sonde nach oben gefahren werden bis ein sicherer Abstand zum DUT erreicht ist. Wurde eine ICR-Sonde verwendet, sollte die Sonde soweit nach oben gefahren werden, dass die Schutzkappe komplett über die Spitze der ICR-Sonde geschoben und eingerastet werden kann.

Danach kann der Scanner ordnungsgemäß abgeschaltet werden.

21 Abbau nach Beendigung der Messung/en

21.1 Abbau der ICR-Sonde

Sachschäden durch mangelnden Schutz der ICR-Sonde!

Bevor die ICR-Sonde von der Dreheinheit entfernt wird, muss die Schutzkappe über die Sondenspitze geschoben und verriegelt werden. Dadurch wird eine Beschädigung der Sondenspitze so weit wie möglich vermieden.

Die angeschlossene ICR-Sonde wird durch Lösen der Rändelschrauben M3 vom Drehring der Dreheinheit entfernt. Halten Sie dazu die Sonde mit einer Hand fest und lösen mit der anderen Hand die Rändelschrauben.

Die ICR-Sonde muss weiter festgehalten, das Tiefentestkabel SSMB-SSMB mit der freien Hand vom SSMB-Anschluss der ICR-Sonde abgezogen und anschließend das Messkabel SMA-SMA vom SMA-Anschluss der ICR-Sonde abgeschraubt werden.

Die ICR-Sonde kann nun im vorgesehenen Koffer sicher verstaut werden.

21.2 Abbau der Nahfeldsonde

Die installierte Nahfeldsonde wird mitsamt der Sondenhülse von der Magnethalterung der SH 01 gelöst. Falls gewünscht kann die Befestigungsschraube an der Sondehülse gelöst und die Nahfeldsonde nach oben herausgezogen werden.

Nun wird das angeschlossene Messkabel entfernt und die Nahfeldsonde im vorgesehen Koffer sicher verstaut.

21.3 Abbau der Sondenhalterung SH 01 vom FLS 106 IC

Zuerst wird das angeschlossene Kabel SSMB-SSMB von der Sondenhalterung SH 01 abgezogen. Danach wird die SH 01 durch Lösen der Rändelschrauben M3 von der Dreheinheit entfernt.

21.4 Abbau des Vorverstärkers bzw. Bias-Tees BT 706

Zuerst wird das Messkabel am Signaleingang des Vorverstärkers / Bias-Tees per Hand entfernt und das Spannungsversorgungskabel vom 12-V-Eingang abgezogen. Anschließend ist der Vorverstärker / Bias-Tee vom "RF in"-Anschluss am Z-Achsenturm per Hand abzuschrauben.

Vorverstärker / Bias-Tee und die zugehörigen Kabel sind im vorgesehenen Koffer zu verstauen.

21.5 Abbau eines Prüflings vom T-Nutentisch

Zuerst werden die Spannpratzen (Schrauben M6, Innensechskant 5 mm) gelöst und danach der Prüfling vom T-Nutentisch entfernt.

21.6 Abbau einer Leiterkarte vom UH DUT

Nach dem Lösen aller befestigten Krallen (claw 01 und/oder claw 02) (Schrauben M3, 2,5 mm Innensechskant) wird die Leiterkarte von der Universalhalterung UH DUT entfernt.

21.7 Abbau des UH DUT

Zuerst werden die Spannpratzen (Schrauben M6, Innensechskant 5 mm) gelöst und anschließend der UH DUT vom T-Nutentisch entfernt.

21.8 Abbau der GND 25

Die auf dem GND 25 Halter installierte Groundplane GND 25 mit beiden Händen am Rand anfassen und nach oben heben.

21.9 Abbau des GND 25 Halters

Um den GND 25 Halter zu entfernen, müssen die zwei Schrauben M6 (Innensechskant 4 mm) herausgeschraubt werden. Anschließend werden der GND 25 Halter abgehoben und die T-Nutensteine über die T-Nutenöffnungen vom T-Nutentisch entfernt.

21.10 Abbau der Mikroskopkamera DM-CAM

Der HR10-Stecker wird vom HR10-Anschluss mit der Bezeichnung "Camera" am Z-Achsenturm des Scanners entfernt. Dabei muss die Schnellverschlusskupplung des Steckers zurückgezogen werden.

Anschließend wird die kleine silberne Rändelschraube an der Kameraschraube gelöst und die Mikroskopkamera nach oben herausgezogen.

Je nach Bedarf kann zusätzlich die Kameraschraube vom Kamerahalter DM-CAM holder.3 entfernt werden. Dazu muss die große, silberne Rändelschraube an der Rückseite vom DM-CAM holder.3 gelöst werden.

21.11 Abbau der Kamerahalterung DM-CAM holder.3

Je nach Bedarf kann der DM-CAM holder.3 von der Dreheinheit entfernt werden.

Dies geschieht durch Lösen der beiden Rändelschrauben M4 auf der Oberseite der Dreheinheit.

22 Wartung

22.1 Allgemeine Hinweise

Der Scanner FLS 106 sollte in regelmäßigen Abständen von außen gereinigt werden. Hierzu wird ein trockenes, weiches Staubtuch empfohlen. Benutzen Sie bei gröberer Verschmutzung ein feuchtes Tuch mit neutralem Reinigungsmittel.

22.2 Wartungsintervalle

Durchzuführende Tätigkeit	Häufigkeit der Durchführung	
Sichtprüfung des Scanners und der Anbauteile durchführen.	Vor jeder Benutzung	
Oberfläche des Scanners mit Staubtuch reinigen.	Monatlich (oder je nach Bedarf eher)	
Verunreinigte Stellen - insbesondere Gleit- schienen - mit feuchtem Tuch und neutralem Reinigungsmittel reinigen.	Nur bei Bedarf	
Schienen und Führungen einölen	Vor längerem Stillstand	
Kugelgewindespindeln und Gleitschiene der Z-Achse über Schmiernippel fetten	alle 2 Jahre	

22.3 Erneuerung der Beschilderung

Die Beschriftungen, Schilder und Sicherheitszeichen auf dem Scanner sind dauerhaft angebracht. Sollten diese sich ablösen oder durch äußerliche Einflüsse unleserlich werden, müssen sie ersetzt werden.

In diesem Fall wenden Sie sich bitte an die Langer EMV-Technik GmbH (Kapitel 25).

23 Demontage

23.1 Allgemeine Hinweise

Nachdem der Scanner FLS 106 das Ende seines Nutzungszyklus erreicht hat, muss er demontiert und umweltgerecht entsorgt werden.

Sofern mit der Langer EMV-Technik GmbH keine Rücknahme- oder Entsorgungsvereinbarung getroffen wurde, muss der Scanner fachgerecht in seine Bestandteile zerlegt und der Wiederverwertung zuführt werden.

Bitte beachten Sie, dass Arbeiten an den elektronischen Bauteilen nur von Elektrofachkräften ausgeführt werden dürfen und dass die Demontage der übrigen Bauteile nur von entsprechenden Fachkräften ausgeführt werden darf.

23.2 Sicherheitshinweise für Demontage

Gefahr durch unsachgemäße Demontage!

Verletzungsgefahr bei Nichtbeachtung der Anweisungen!

Lesen Sie Kapitel 23 vor der Demontage sorgfältig durch.

Verwenden Sie nur geeignetes Werkzeug.

Achten Sie auf spannungsfreie Kabel und Elektronik.

Achten Sie darauf, dass Kabel und Elektronik bei der Demontage spannungsfrei bleiben.

Lagern Sie demontierte Komponenten sicher und sortiert nach Materialart.

Wenden Sie sich bei Unklarheiten an die Langer EMV-Technik GmbH.

Beachten Sie bei der Demontage des Scanners alle geltenden örtlichen Gesundheits-, Sicherheitsund Umweltvorschriften.

23.3 Demontage

Vor der Demontage unbedingt den Scanner ausschalten und Netzkabel entfernen. Führen sie die Demontage

Empfohlener Ablauf:

- (1) Demontieren der Anbauteile
- (2) Demontieren der Baugruppen
- (3) Entfernen der elektrischen Leitungen, Leiterplatten und Motoren

24 Entsorgung

24.1 Entsorgung von Verpackungsmaterial

Mögliche Gefährdung der Umwelt durch unsachgemäße Entsorgung von Verpackungsmaterialien!

Entsorgen Sie Verpackungsmaterialien nicht im normalen Hausmüll.

Verpackungsmaterialien müssen ordnungsgemäß recycelt werden.

Entsorgen Sie Verpackungsmaterialien getrennt nach Materialart.

Beachten Sie die örtlichen Entsorgungs- und Umweltschutzbestimmungen.

24.2 Entsorgung des Scanners und seiner Komponenten

Mögliche Gefährdung der Umwelt durch unsachgemäße Entsorgung des Scanners FLS 106 und seiner Komponenten!

Der FLS 106 und seine Komponenten sind gemäß den örtlichen Entsorgungs- und Umweltschutzbestimmungen zu entsorgen.

Entsorgen Sie den FLS 106 und seine Komponenten nicht im normalen Hausmüll.

Der FLS 106 und seine Komponenten müssen ordnungsgemäß recycelt werden.

Der FLS 106 muss vor der Entsorgung ordnungsgemäß demontiert werden (Kapitel 23).

Entsorgen Sie den FLS 106 und seine Komponenten getrennt nach Materialart.

FLS 106 IC set / FLS 106 PCB set

25 Kundenservice

Bei Fragen, Hinweisen und Anregungen nehmen Sie bitte mit uns Kontakt auf.

Sie erreichen uns: Mo. - Fr. 8.00 Uhr – 15 Uhr

Kontaktieren Sie uns hierzu unter:

Langer EMV-Technik GmbH Rosentitzer Straße 73 01728 Bannewitz Deutschland

Internet: https://www.langer-emv.de

Email: mail@langer-emv.de

Tel.: +49 (0) 351-430093-0 Fax: +49 (0) 351-430093-22

26 Gewährleistung

Langer EMV-Technik GmbH wird jeden Fehler aufgrund fehlerhaften Materials oder fehlerhafter Herstellung während der gesetzlichen Gewährleistungsfrist beheben, entweder durch Reparatur oder Lieferung von Ersatzteilen.

Die Gewährleistung gilt nur unter folgenden Bedingungen:

• den Hinweisen und Anweisungen der Bedienungsanleitung wurde Folge geleistet.

Die Gewährleistung verfällt, wenn:

- am Produkt eine nicht autorisierte Reparatur vorgenommen wurde,
- das Produkt verändert wurde,
- das Produkt nicht bestimmungsgemäß verwendet wurde,
- das Produkt geöffnet wurde.

Es ist nicht erlaubt, ohne die schriftliche Zustimmung der Langer EMV-Technik GmbH, dieses Dokument oder Teile davon zu kopieren, zu vervielfältigen oder elektronisch zu verarbeiten. Die Geschäftsführung der Langer EMV-Technik GmbH übernimmt keine Verbindlichkeiten für Schäden, welche aus der Nutzung dieser gedruckten Informationen resultieren.

LANGER	Nöthnitzer Hang 31	Tel.: +49(0)351/430093-0
EMV-Technik GmbH	DE-01728 Bannewitz	Fax: +49(0)351/430093-22
	www.langer-emv.de	mail@langer-emv.de